

ESTUDO COMPARATIVO DE PROPRIEDADES MECÂNICAS DE AÇOS INOXIDÁVEIS

MIGUEL CARLOS MANFRIN, LÍRIO SCHAEFFER

s aços inoxidáveis são altamente resistentes à corrosão (ferrugem) em diversos ambientes, seu elemento de liga predominante é o cromo, pelo menos 11% de Cr é necessária. Com base na fase predominante em sua microestrutura, os aços inoxidáveis são divididos em classes: martensíticos, ferríticos, austeníticos e endurecíveis por precipitação.

A tabela 1, que lista vários aços inoxidáveis, por classe, juntamente com a composição, as propriedades mecânicas típicas e as aplicações. Uma ampla variedade de propriedades mecânicas, combinadas com excelente resistência à corrosão, torna os aços inoxidáveis muito versáteis em termos de aplicações.

As propriedades mecânicas dos aços inoxidáveis martensíticos são fortemente afetadas pela concentração de carbono e elementos de liga, pelo processo de fabricação e pelos parâmetros de tratamento térmico empregado. Em geral, os aços desta família possuem elevada dureza, boa resistência à fadiga e uma excelente resistência ao desgaste. Eles, porém, apresentam uma menor resistência a corrosão quando comparados com os aços inoxidáveis ferríticos e austeníticos (ASM Handbook Stainless Steels 1999).

Desse modo, os aços inoxidáveis martensíticos, necessitam ser submetidos ao tratamento de têmpera, para obtenção da microestrutura martensítica. Nesta condição, tanto o carbono quanto o cromo estarão dissolvidos na martensita. (ASM *Handbook Stainless Steels* 1999).

Quando se adiciona cromo ao sistema Fe-C ocorre a diminuição da extensão do campo monofásico de estabilidade da austenita e a formação de carbonetos complexos de elemento de liga (BAIN, E. C. & PAXTON, H. W. e HONEYCOMBE, R. W. K).

Além do cromo e do carbono, os aços desta família podem ter adições de Ni, para melhoria da tenacidade, e de Mo, V e W para maior resistência mecânica em altas temperaturas, conseguida através de precipitação de carbonetos estáveis. Adições de enxofre também podem ser feitas para melhoria da usinabilidade dessas ligas (LIPPOLD e KOTECKI, 2005).

A introdução de elementos de liga ao sistema binário Fe-C causa modificações nas características de transformações de fase como, por exemplo: expansão ou contração do campo de estabilidade da austenita e da ferrita, aumento ou diminuição da temperatura MS/MF, deslocamento das curvas de transformação sob resfriamento contínuo, formação de novas fases, etc (HONEYCOMBE, R. W. K). O conhecimento destas modificações é importante para o entendimento da microestrutura de aços ligados, de suas características de

	% C	% Si	% Mn	% P	% S	% Ni	% Cr	% Mo
301	≤ 0,15	≤ 1,00	≤ 2,00	≤ 0,045	≤ 0,03	6,0 / 8,0	16,0 / 18,0	-
302	≤ 0,15	≤ 1,00	≤ 2,00	≤ 0,045	≤ 0,03	8,0 / 10,0	17,0 / 19,0	-
304	≤ 0,08	≤ 0,75	≤ 2,00	≤ 0,045	≤ 0,03	8,0 / 10,5	18,0 / 20,0	-
304 L	≤ 0,03	≤ 0,75	≤ 2,00	≤ 0,045	≤ 0,03	8,0 / 12,0	18,0 / 20,0	-
316	≤ 0,08	≤ 0,75	≤ 2,00	≤ 0,045	≤ 0,03	10,0 / 14,0	16,0 / 18,0	2,0 / 3,0
316 L	≤ 0,03	≤ 0,75	≤ 2,00	≤ 0,045	≤ 0,03	10,0 / 14,0	16,0 / 18,0	2,0 / 3,0
321	≤ 0,08	≤ 0,75	≤ 2,00	≤ 0,045	≤ 0,03	9,0 / 12,0	17,0 / 19,0	
409	≤ 0,03	≤ 1,00	≤ 1,00	≤ 0,040	≤ 0,02	≤ 0,50	10,5 / 11,75	-
410	≤ 0,15	≤ 1,00	≤ 1,00	≤ 0,040	≤ 0,03	-	11,5 / 13,5	-
420	≤ 0,15	≤ 1,00	≤ 1,00	≤ 0,040	≤ 0,03	≤ 0,75	12,0 / 14,0	0,50
430	≤ 0,12	≤ 1,00	≤ 1,00	≤ 0,040	≤ 0,03	≤ 0,75	16,0 / 18,0	_

Tabela 1 - Composição química dos aços inoxidáveis (NBR5601 de 12/2011)

tratamento térmico e da relação entre a microestrutura e suas propriedades.

De acordo com Kuo no sistema Fe-C-Cr podem ser formados carbonetos complexos ligados ao cromo (KUO, K). O cromo pode ser dissolvido na cementita formando o carboneto (Fe,Cr)3C ou M3C ou formar mais dois tipos de carbonetos de cromo com novas estequiometrias, dissolvendo ferro simultaneamente, como: (Cr,Fe)23C6 e (Cr,Fe)7C3, ou M23C6 e M7C3, onde M = Cr,Fe ou outro elemento de liga formador de carboneto presente na composição da liga em menor concentração.

O tamanho dos grãos, ou o diâmetro médio do grão, em um metal policristalino influencia suas propriedades mecânicas. Um material com granulação fina tem dureza maior e é mais resistente que um material com granulação grosseira, uma vez que o primeiro possui maior área total de contornos de grão para impedir o movimento das discordâncias (CALLISTER 2012).

A combinação dessas propriedades faz com que os aços inoxidáveis martensíticos sejam amplamente utilizados na confecção de instrumentos cirúrgicos e odontológicos, em cutelaria, ferramentas de corte, válvulas, engrenagens, peças de turbinas a vapor, dispositivos de fixação. (VILLARES 2005).

MATERIAIS E MÉTODOS

MATERIAIS

Foram comparados dois aços inoxidável martensíticos na forma de chapas laminadas enroladas em bobinas, referências P498V e 12C27M. A Tabela 2 apresenta a composição química dos aços citados em suas respectivas fichas técnicas e certificados de qualidade: P498V [1] e 12C27M [2]:

Aço	С	Mn		P	S	Cr	Ni	Мо	Ti	Cu	Co	٧
P498V	0,434	0,47	0,4	0,024	0,0003	14,4	0,19	0,517	0,014	0,022	0,015	0,104
12C27M	0,52	0,6	0,4	0,025	0,01	14,5	-	-	-	-	•	

Tabela 2 - Composição química dos materiais utilizados (% em massa)

Estes aços são comerciais e amplamente indicados pelos seus respectivos fabricantes para serem utilizados na indústria da cutelaria como ferramentas para utilização na cozinha, açougues e frigoríficos (facas e tesouras), por com-binarem resistência e tenacidade, desgaste e oxidação, podendo trabalhar nos variados tipos e níveis de solicitação [1],[2].

PROCEDIMENTOS EXPERIMENTAIS

CARACTERIZAÇÃO ESTRUTURAL

A figura 1 mostra como as chapas são recebidas. Corpos de prova foram recortados de cada aço e divididos em 2 grupos.

O primeiro grupo recebeu um tratamento de têmpera em banho de sal, subzero e revenido: na têmpera, foram aquecidos à 1060°C e mantidos por 10 minutos com resfriamento à 160°C por 5 minutos; no subzero, foram resfriados à 120°C e mantidos por 40 minutos e no revenidos, aquecidos à 300°C e mantidos por 1,5 horas e após, os fornos foram abertos, resfriando-os à temperatura ambiente.

O segundo grupo foi man-tido na condição de recebimento das respectivas Usinas.

Os corpos de prova foram metalograficamente preparados e analisados no Laboratório de Metalurgia da empresa MUNDIAL S/A em Gravataí, RS com o auxílio de um Microscópio Metalográfico Union Versamet-2.

Com relação às medições do tamanho de grão da Austenita, os ensaios seguiram a norma ASTM-E112-2010 utilizando o Método da Interceptação de Círculo e foram realizadas nos Laboratório de Fundição - LAFUN, na UFRGS, com o auxílio do Software OMNIMET da Buehler.

COMPOSIÇÃO QUÍMICA

Os aços foram submetidos a Análise de composição química no Laboratório de Fundição – LAFUN da UFRGS através da utilização do Espectrômetro de emissão ótica.

ENSAIOS MECÂNICOS

As medições de dureza foram realizadas no Laboratório de Metalurgia da empresa MUNDIAL S/A em Gravataí, RS com o auxílio de um Durômetro Universal Acco Wilson Instrument Rockwell utilizando 3 corpos de provas de cada aço e lotes. Para os aços temperados a carga utilizada foi de 150kgf e o tempo de aplicação de 8s, já para os aços vindos das usinas a carga foi de 100 Kgf e o

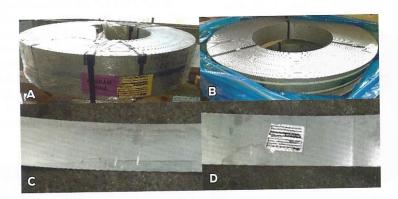


Figura 1 - (A) chapas em bobina aço P498V espessura 2,9 mm; (B) chapas em bobina aço 12C27M espessura 2mm; (C) Pedaço de chapa aço P498V; (D) Pedaço de chapa aço 12C27M

tempo de aplicação de 8s.

Os ensaios de tração foram realizados nos Laboratórios de Metalurgia Física LAMEF e o Laboratório de Transformação Mecânica LdTM ambos na UFRGS Porto Alegre, RS. Foram utilizados 3 corpos de prova de cada aço e grupos cortados com equipamento eletro a fio no sentido paralelo às linhas de laminação (figura 2).

Figura 2 - (A) aço P498V espessura 2,9 mm; (B) aço 12C27M espessura 2mm

Os ensaios seguiram a norma NBR ISO 6892-1/2013 (ASTM E8/E8M-09), sendo que no LAMEF foi utilizado uma máquina servo-hidráulica do tipo MTS 810, com capacidade de 11 KN, à tempera¬tura ambiente e no LdTM, utilizado uma máquina servo-hidráulica do tipo EMIC GR044, com capacidade de 600 KN.

Nos ensaios de tração foram determi-nados os seguintes parâmetros: limite de escoamento (tenção de escoamento "σe"), limite de resistência (tenção máxima "om"), alongamento total (Δ L) e módulo de elasticidade (E).

RESULTADOS E DISCUSSÃO

CARACTERIZAÇÃO MICROESTRUTURAL As regiões dos corpos de prova onde foram analisadas as imagens das micro-

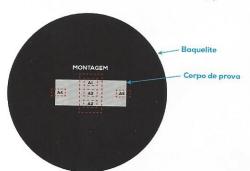


Figura 3 - Regiões na seção transversal do corpo de prova onde foram analisadas as imagens microestruturais (A1, A2, A3, A4 e A5)

estruturas das seções transversais dos aços estão representadas na Figura 3.

As microestruturas dos aços vindo das usinas estão apresentadas na Figura 4.

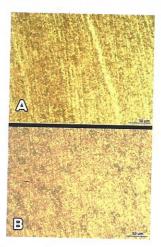


Figura 4 - (A) aço P498V região A3, (B) aço 12C27M região A3. (100X)

O aço 498V (A) apresentou austenita e ferrita com grãos pequenos, refinados e bem distribuídos, carbonetos primários e secundários dispersos na matriz e carbonetos primários alinhados no centro.

O aço 12C27M (B) apresentou austenita e ferrita com grãos pequenos, refinados e bem distribuídos, carbonetos secundários dispersos na matriz e carbonetos primários isolados.

As microestruturas das seções transversais dos aços após serem tratados termicamente estão apresentadas na Figura 5.

O aço 498V (a) apresentou matriz característica de martensita revenida com carbonetos secundários dispersos e também aglomerados no centro e, com alguns carbonetos primários isolados. Possuindo tamanho de grão ASTM 9,5 que equivale ao diâmetro médio de 13,3 μm.

O aço 12C27M (b) apresentou matriz

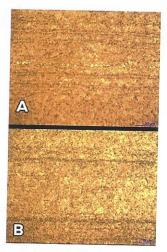


Figura 5 - (A) aço P498V região A3, (B) aço 12C27M região A3. (100X)

característica de martensita revenida com carbonetos secundários dispersos e também aglomerados e, com alguns carbonetos secundários dispersos. Possuindo tamanho de grão ASTM 9,82 que equivale ao diâmetro médio de 12 μm.

COMPOSIÇÃO QUÍMICA

Os resultados das análises estão listados na Tabela 3.

A análise da composição química dos aços demonstrou que as % dos elementos existentes estão muito próximos dos dados fornecidos pelos fabricantes dos respectivos aços [1],[2].

ENSAIOS MECÂNICOS

Os resultados das durezas Rockwell (HRC) estão na tabela 4. Existe uma diferença de durezas nos aços recebidos das respectivas usinas, resultado do maior grau de deformação no processo de laminação e recozimento das chapas, como verificado na caracterização microestrutural.

Com relação as durezas pós tratamentos térmicos, os dois aços alcançaram os mesmos resultados.

Aço	C	Mn	Si	P	S	Cr	Ni	Мо	Ti	Cu	Co	V
P498V	0,412	0,37	0,56	0,025	0,012	12,51	0,12	0,538	<0,003			0.068
12C27M	0,457	0,59	0,51	0,026	0,013	12,65	0,139	0,123	<0.003	-	-	0.028

Tabela 3 - Composição química dos materiais utilizados (% em massa)

Tratamento térmico	Aço P498V	Aço 12C27M
Recebido da Usina (recozido)	95 HRB	. 88 HRB
Têmpera, subzero e revenido	55 HRC	55 HRC

Tabela 4 - Durezas dos aços P498V e 12C27M

A Tabela 5 apresenta os resultados obtidos nos ensaios de tração para os aços P498V e 12C27M. Observa-se que os tra-tamentos térmicos aplicados para a formação de microes-truturas martensítica provocaram um aumento no limite de escoamento e de resistência nos dois aços estudados.

A Figura 6 apresenta as curvas de tensão x deformação relativa das chapas do grupo dos aços tratados termicamente.

Aço	Limite de Escoamento "σe" (MPa)	Limite de Resistência "om" (MPa)	Alongamento ΔL (%)	Módulo Elasticidade E (Mpa)
P498 vindo da Usina	600	650	9	16.500
P498V tratado termicamente	1.591	1.912	1,44	212.000
12C27M vindo da usina	500	600	13	23.000
12C27M tratado termicamente	1.572	1.951	1,49	217.500

Tabela 5 - Propriedades mecânicas dos aços P498V e 12C27M

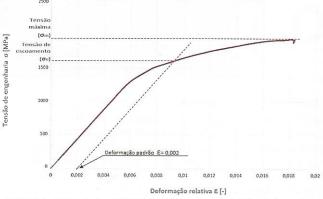


Figura 6 A - Curva do Aço P498V: Tensão de engenharia (σ) x Deformação relativa (ε)

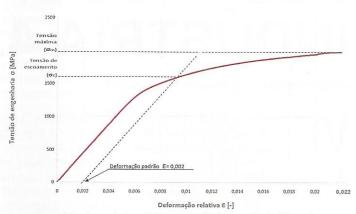


Figura 6 B - Curva do Aço 12C27M: Tensão de engenharia (σ) x Deformação relativa (ε)

Analisando as curvas podemos concluir que o limite de escoamento do aço inoxidável 12C27M é um pouco menor que o aço P498V, porém o limite de resistência do 12C27M é um pouco maior que o P498V.

Com relação aos módulos de Elasticidade e os alongamentos, o aço 12C27M apresentou valores um pouco acima do aço P498V.

CONCLUSÕES

A metodologia experimental proposta permitiu a comparação de desempenho mecânico de chapas dos aços inoxidáveis 12C27M e P498V.

As microestruturas dos aços estudados após terem sido tratados termicamente são majoritariamente constituídas por grãos de martensita, sendo

que o aço P498V apresentou o tamanho médio de grãos ASTM de 9,5 contra o 12C27M de 9,82.

Em tração, o aço 12C27M suportou um nível de carregamento um pouco maior que o P498V até a ruptura.

Com relação aos módulos de elasticidade o aço 12C27M apresentou valores ligeiramente acima do aço P498V, o que garante maior energia absorvida no regime elástico.

Este trabalho foi eficiente ao comparar dois aços inoxidáveis martensíticos sobre os aspectos da microestrutura e o comportamento mecânico, permitindo nos concluir que, apesar de algumas pequenas diferenças serem favoráveis ao aço 12C27M, ambos os aços podem ser utilizados para a fabricação de produtos onde a resistência à oxidação

e desgaste fazem-se necessários, como por exemplo na cutelaria, sem que seus produtos sofram perdas de qualidades comparativamente.

Miguel Carlos Manfrin: Possui graduação em Engenharia Mecânica pela Universidade Federal de Santa Maria(1993). Atualmente é Analista de Pesquisa e Desenvolvimento da Mundial S/A Produtos Consumo. Tem experiência

na área de Engenharia de Materiais e Metalúrgica. Lírio Schaeffer: Engenheiro Mecânico, doutor em engenharia, professor titular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil. schaefer@ufrgs.br

Utilize o QR Code ao lado para acessar as referências bibliográficas do artigo